
Scaling in reaction-diffusion systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 L77

(http://iopscience.iop.org/0305-4470/20/2/007)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 20 (1987) L77-L83. Printed in the UK 
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k k  
Abstract. We study irreversible reaction-diffusion models of the form pX 2 mX A qX, 
sX nX, m < n. Competition between k,, k, gives a continuous transition for d > d, = 
2( n - m + 1)/( n - 1 )  which we study for d < d, using the renormalisation group in conjunc- 
tion with E expansion and exact techniques. For m = 1 and any n the transition remains 
continuous. We present E expansions for the case n = 3. By contrast, for m = 2 and any 
n the system shows a fluctuation-induced first-order transition. 

Scaling in non-equilibrium irreversible kinetic growth models such as diffusion-limited 
aggregation (Witten and Sander 1983) and the Eden model (Eden 1961) has led to 
renewed interest in the properties of simple reaction-diffusion models (Elderfield 
1985a, Peliti 1985). As the oft-studied models of Schlogl (1972) have already shown, 
the absence of simple potential solutions leads to a wealth of rich dynamical structures. 
We study here the simplest fully irreversible reaction-diffusion model which, at the 
mean-field level of approximation, displays a continuous transition. Adopting a power- 
ful field theoretical approach recently developed (Elderfield 1985b, Grassberger and 
Scheunert 1980, Peliti 1985), we study our model system using the renormalisation 
group. Work is done both in the context of E expansions and exact renormalisation 
group equations. Broadly speaking, the behaviour of these irreversible models falls 
into two classes. The first is closely related to that of Schlogl (Elderfield and Vvedensky 
1985 and references therein), in that E expansions can be developed and no simple 
fluctuation dissipation theorem exists. Three critical exponents suffice to determine 
the full scaling behaviour, despite the suggestion of Ohtsuki and Keyes (1986). For 
the second class exact renormalisation group equations show that no stable fixed point, 
perturbative or otherwise, exists for d < d, (the upper critical dimension), indicating 
the appearance of a fluctuation-driven discontinuous transition. 

We consider the irreversible reaction sequence 

where m < n, p < m < q, s < n. The natural reaction-diffusion master associated with 
(1) takes the following spatially discrete form: 
aP N 

- ( { x i } ,  t )  = C o V ( ( x i  + 1 ) P ( x , ,  x 2 , .  . . , xi + 1, .  . . , xj - 1, .  . . , xN, t )  - p ( { x i } ,  t ) )  
at  i j = 1  
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where xi is the number of X molecules in the ith cell, the non-local terms represent 
cell to cell diffusion and the local terms are specified by the reaction sequence. To 
solve (2) we seek solutions in the form of a Poisson transform (Gardiner and Chaturvedi 
1977, Elderfield 1985a), 

where % is a closed contour in the complex plane and as suchf({ai}, 1 )  is best viewed 
as a Markovian quasiprobability. Direct substitution of (3) into (2) then leads to an 
exact Fokker-Planck description: 

which for our purposes is then best rewritten in a path integral form. Adopting a 
vatant of the Martin-Siggia-Rose ( MSR) formalism one obtains a generating functional 
Z( I ,  I) for the Poissonian correlation and response functions in the form (Elderfield 
1985b, Elderfield and Vvedensky 1986) 

Z(f, I) = [da] [da] exp( I dt(L+ la + %)) 

where the- Lagrangian is given by 

L= dr" ia(r ,r)  -DoV2+- a ( r , t )  J [ A  ( a4) 
-kl((l-iG(r, t))'"-(l-i$(r, t ) ) P ) a m ( r ,  t )  

+k,((l -i&(r, t))4-(1 -iG(r, t ) ) " ) a " ( r ,  t )  

-k3((1 -iG(r, t))"-(l  -ia(r, t ) ) s ) a " ( r ,  t ) ] .  

As one might expect Poisson correlation and response functions are given by 

a/( r, t )  a/( r ' ,  t ' )  
( a ( r ,  r )a ( r ' ,  t ' ) )=  
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These may then be directly related to the concentration correlation functions via 
equal-time connection formulas evident from (3): 

((x(r,  t M = ( a ( r ,  t ) )  

((x(r,  r )x ( r ’ ,  t ) ) )  = (a( r ,  t ) a ( r r ,  t ) > +  a ( r -  r ’ ) (a ( r ,  t ) )  (8) 

or for multitime correlations by the generalisations derived by Elderfield (1985b) 
I Z I ’  

((x(r,  t ) x ( r ’ ,  t ’ ) ) )  = ( a ( r ,  t )a(r’ ,  t))+i(a(r, r)&(rr, t r ) a ( r r ,  t’)). (9) 

On a technical level please note that there are no ‘Jacobian’ factors in (6) since we 
have adopted an ordering such that 

(&( t)Pa ( t ) 9 )  = 0 (10) 

for all p > 1 and any 4 (Elderfield 1985~). Our representation (5) and (6) is, of course 
closely related to that of Grassberger and Scheunert (1980) and Peliti (1985). However, 
for ‘factorial’ master equations of the form (1) the approach via Poisson transforms 
seems to offer both the benefits of physical interpretation (Elderfield and Vvedensky 
1986) and simplicity. In particular we would note that only in the paper of Elderfield 
(1985b) can one find information about the multitime correlation functions (9). 

Given the Lagrangian L, it is self-evident (if not before) that competition between 
( k l ,  k2) can lead to a continuous transition from the trivial vacuum ( x )  =O.  The 
deterministic or mean-field approximation gives 

a a / a t - D o V 2 a  = - ( r o ~ m + g o ~ n )  (11) 

where r o = ( m - p ) k l - ( q - m ) k 2 ,  g o = ( n - s ) k , > O .  Extrema of (5) for which (a)= 
(x)<O are unphysical so we need not constrain m to be odd (m< n). Solving (11) 
for non-trivial stationary states one finds directly 

ro < 0 
otherwise. 

( x ) =  (a) = 

Of course, near the phase transition this approximation is of course often poor, since 
for dimensions d < d,, the upper critical dimension, the corrections to (12) typically 
diverge as Irol + 0. We must therefore estimate d, and then systematically improve (1 1) 
and (12). 

To correct (12), we adopt the renormalisation group approach. First we analyse 
the naive dimensions of the various non-linear couplings in terms of a microscopic 
time T and related diffusion length I = ( DO7)ll2 by observing that 

[ wO]  - [ Dok2]  - 7- l  [&a] - 1-d (13) 
whilst the strongest non-linearities determine (self-consistently) the relative dimension 
of the fields 

[&(a)”] - [ (a2(a)m1 (14) 

for n > m and r0+ 0. Using this information we can follow BrCzin et a1 (1973) and 
now focus on the reduced Lagrangian L* 
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where the dominant non-linear couplings go, uo have dimension 

(16) 

As usual the upper critical dimension d, follows from consideration of the associated 
dimensionless coupling: 

(17) 

Here the length C, divergent as the transition is approached, is a characteristic macro- 
scopic length. For ro < 0 or m = 1, 5 can be taken to be the correlation length but for 
other cases one must be more careful. Corrections to (12) are controlled by (17) so 
it is self-evident that, for d < d,,  

- 1  d ( n - l ) / ( n - m + l )  [ so l  = [U01  - 7 1 

(go/ D)( C) 2 - d ( n -  1 )/( n--m+l) 

2(n - m + 1) 
n - 1  

d,  = 

mean-field approximations must be abandoned. Higher-order couplings dropped from 
(15) by the same token give only finite corrections. As a final cosmetic feature we 
observe that by a simple finite rescaling we may set lgol = Itrol, so we replace L* by L: 

+go(i&cun*22am) . 1 
Stripped of irrelevant details it is this Lagrangian, rather than L defined by (6), that 
controls the physics of the reaction scheme (1). 

To construct the desired renormalisation group equation we use a variant of the 
approach of de Dominicis and Peliti (1978). First we renormalise the theory by defining 
new fields aR, &R and couplings D, r, g, U: 

&R = (i/z)& 

which after fixing the Z by minimal subtraction on the dimensionally regularised 
theory renders the theory finite (Amit 1978). Introducing the vertex generator 

one has by construction the relation 

r( f iR,  M R ,  D, r, g, U, T ) = r ( f i ,  M, DO, r O ,  go ,  UO) (22) 

which amounts to a renormalisation group equation once the 2 have been determined. 
To fix all the 2 with the exception of the field renormalisation 2, it is sufficient to 
renormalise the vertex functions 
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In order to fix 2 we observe that the initial rescaling symmetry, by which we chose 
uo= go, implies from (20) 

g / u  = (zu/z,)(&)-'z"-~+'. (24) 

Naturally in the renormalised theory we may also choose g = U, providing then that 2 
is chosen consistently from (24). Other choices are equivalent up to irrelevant 
reparametrisations, whilst g = U has great merit in that the non-linear coupling controll- 
ing the physics is unique. Given (22) and g = U, we may obtain the renormalisation 
group equation by simple differentiation. One finds 

where 

a 
ag 

a 
ag 

t d 8 )  = P ( g )  - -n(z)  

t % g )  = P k ) -  w Z / a  
and E = d,- d. The exponent functions P ( g ) ,  v ( g ) ,  z ( g ) ,  v ( g ) ,  $ ( g )  are of course 
regular functions of g, E only. 

The renormalisation group equation (25) describes the full scaling behaviour of 
the theory at large distances and long times. Legendre transformation, functional 
differentiation and the connection formulae (8) and (9) show (Elderfield and Vvedensky 
1985) that, for example, the concentration (x) and two-point correlation function (xx) 
satisfy 

Solution of these equations is standard (Amit 1978). Assuming the existence of an 
infrared stable fixed point g * ( P ( g * )  = 0, P ' ( g * )  < 0 )  one finds 

(29) 

(30) 

U[ d / ( n  - m  + 1 )+:q] ( 4  - Irl 
UL( I - R ) 
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where the critical exponents v = v ( g * ) ,  z = z ( g * ) ,  r] = r ] ( g * )  are identified. Strictly for 
the reaction scheme ( l ) ,  is redundant for f # 0 corresponds to addition of a reaction 

o+ x. (31) 

The scaling behaviour of the irreversible system ( 1 )  is thus completely described by 
three critical exponents v which controls the correlation length, z the dynamical 
exponent and the anomalous field dimension 7. 

We have implemented the full renormalisation group programme outlined above 
for two classes of system. 

(a)  m = 1, n =k, dc=2k/(k-1) .  Quite generally for these systems one is forced 
to work within the framework of an E expansion. We note that for k = 2, d, = 4 and 
the system belongs to the same universality class as Schlogl's first model 
and Vvedensky 1985 and references therein): 

x e 2 x  

xeo  

Elderfield 

(32) 

symmetry a model which is plainly rever$ble. In consequence there is an additiona 
G ( t )  e u ( - t )  which implies A ( g ) = A ( g ) .  For higher values of k new universality 
classes appear. In particular, for k = 3, d, = 3 and we find three independent critical 
exponents: 

~ = f - 0 . 0 2 6 ~ + 0 ( ~ * )  

2 = 2 + 0 . 0 1 6 ~  + O( E') (33) 
A = 0 .010~  + O( E ' )  

to leading order in E = 3 - d. Note that L, = L- in (19) for this case. 
( b )  m = 2, n = k, d, = 2. In a real sense these systems are trivial because the 

renormalisation programme leads to exact exponent functions. Diagrammatically one 
finds that the two-point vertex functions do not renormalise, whilst the higher vertex 
functions (23) are proportional and may be evaluated directly. Explicitly one has for 
I . .  in (19'1 

where 

1 -- I -  C/S\" I 

\ go 

Consequently there is an infrared stable fixed point only for L, for we find 

p ' ( g )  = &g =F I g 2  I > O .  (36) 
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Moreover there is but one non-trivial exponent 

1 ( k - 1 )  
d ( k - 2 ) '  

U = -  - (37) 

The sign of uo, which determines whether L, or L- is appropriate, is therefore of 
crucial importance. From (b )  we observe 

00 = 2 k ,  - q( - 1 )  k2 (38) 
so that in the vicinity of the transition uo<O for all q 2 3  and thus the unstable 
Lagrangian L- is found in all cases. Whence the continuous transition located by 
mean-field theory in d < 2 dimensions becomes first order directly for d < 2. For 
completeness it is perhaps interesting to observe that L, is relevant in the exceptional 
case- k2 = 0, m = n = 2 corresponding to diffusive annilation (Peliti 1986) 

2x+ x+ 0. 
We would like to thank the SERC for support. 
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